
Shamon: A Shared Reference Monitor for
Distributed Mandatory Access Control

Luke St.Clair, Josh Schiffman, Trent Jaeger, Patrick McDaniel

Problem:

We want to develop trust in the enforcement of security goals
across many machines on an Internet scale, but fear of malicious
administrators, compromised machines, and unwitting leaks of
sensitive data make this difficult. Additionally, the complexity of
operating systems makes it difficult to say anything meaningful
about the security of another system in a traditional setting.

Our goal is to achieve the guarantees of a reference monitor
(tamperproof, completely mediated, simple enough for
verification) in a distributed setting. We would like to establish a
coalition of virtual machines within which we can make some
guarantees about the security of communication and the
enforcement of policy. This coalition will be governed by a
central authority, called a Shamon to enhance scalability and
accommodate dynamic changes to the coalition.

Current Work

Sponsored by IBM Research

Distributed, Shared Reference Monitor (Shamon)

VM VM

Physical Machine

VMM

SendmailApp1

Physical Machine

VMM

VM VM

ApacheApp1

Policy
Server

Physical Machine Physical Machine

Physical Machine Physical Machine

VM

VM

VM VM

VM

VM

VM

VM

VM

VM

VM

VM

VM
VM

VM

VM

Coalition

Untrusted

Network

A Distributed, Trusted, Reference Monitor (DTRM) is established to
enforce policies on physical machines and virtual machines. This is the
entity that is formed to control the coalitions of VMs.

Virtual machines run on the physical machines to provide applications.
This allows us to reason at a much coarser granularity than the operating
system level to govern sharing and access control.

Policies then govern the relationships between VMs, forming coalitions.
These policies govern which VMs are in which coalitions, which coalitions
can talk to each other, and how they may communicate.

Sharing between VMs is governed by sHype, while SELinux governs how
data is transfered from one VMM to another. SELinux policies govern this
relationship, but they are much less complex than governing sharing
between all the subjects and objects on an opertating system.

For this to scale, we must have a way of managing attestations,
membership, and trust.

Unlike previous approaches, we create a way to establish trust in both data
and code. In order to do this, we use a root of trust installer, or ROTI. This
ROTI contains code with digital signatures capable of installing the necessary
core components to form a secure, distributed reference monitor (sCore).
In practice, this is a fully automated installation CD, which installs Xen, a dom0
kernel, and a minimal set of utilities, while using the TPM to guarantee the
origins of data in the dom0 (published at ACSAC ’07). The integrity of data in
the sCore is preserved across boot cycles, and is remotely verifiable by remote
parties.

Future Work

Finally, we will also be reasoning about the properties of the
enforcement system. The enforcement policy will have to be
distributed or reconciled to each machine in the coalition, and
trust relationships will have to be established between
hypervisors. For instance, we will show that the semantics of
the trust logic are correctly enforced in the system policy. We
also will consider the consistency, soundness, and
completeness of the reference monitor in order to evaluate its
effectiveness.

Vision

Physical Machine 1

2

Physical Machine 2

ROTIcustom
scripts

custom installer
kernel

md5
hashes

quotes

quote requests

1

sCore

Xen (sHype)

Linux dom0 with IMA

VM VM

Trust
Service

Xend

Racoon

sCore

Xen (sHype)

Linux dom0 with IMA

VM VM

Trust
Service

Xend

Racoon

3

4

TPM TPM

TPM

keys

2

Disk
Disk

Verify
Root
FS

Install Root FSInstall Root FS

ROTIcustom
scripts

custom installer
kernel

2

Figure 3: sCore’s lifecycle: (1) a ROTI installs the sCore by generating a verifiable root filesystem
and creating TPM keys; (2) the sCore boots verifying its own root filesystem’s integrity; (3) two
sCore attempt to form a SRM , each trust service makes a quote request to generate an attestation;
and (4) a successful SRM join results in an IPsec tunnel between the two systems.

a value representative of this data. Our approach uses a process that does not depend on such data to
compare expected and actual values of such data. Second, the sCore has a small number of keys that
its uses (i.e., appears in cleartext in sCore memory), such as its IKE private key. Our sCore design
generates such keys on each bootcycle to prevent their theft and use in an untrusted system. Using
integrity measurement, we associate the keys with the bootcycle by using integrity measurement to
record the new certificate when it is generated. The sCore design takes steps to prevent the use of
such secrets after boot as well. This requirement goes beyond the traditional Biba requirements to
prevent masquerading as required by Smith [35].

Requirement 3: High integrity sCore at runtime: After verifying a high integrity sCore ac-
cording to Requirement 1, a remote party will continue to accept an sCore as high integrity if it
can additionally prove: (a) that it has checked the integrity of all the software will be loaded by the
sCore and (b) all sCore software protect themselves from malicious input (e.g., code injection).

First, the sCore restricts the software that can be loaded (i.e., into the domain 0 VM) to a
prescribed set, so the remote party can tell that: (1) all the sCore software is measured and (2) no
other software will be loaded. Also, the sCore does not allow users to login to the system (i.e., there
are no such programs at the sCore level and no user identities), so user modification of the sCore at
runtime is not possible 3. Since all sCore processes are identified at verification time, the system
will retain its Biba integrity throughout its run. Second, Biba requires that processes accept no low
integrity inputs. However, the sCore has four software components that must have network interfaces
(see Section 4). Each supports only a small number of legal commands, so a detailed evaluation of the
correctness of input filtering is possible. We do not perform such filtering at present, but the system
design makes such filtering practical.

4 Implementation

Our prototype sCore is shown in Figure 3. The ROTI is an Ubuntu Linux installer kernel version
2.6.20 that we modified to load our near-minimal sCore. The sCore consists of a Xen hypervisor

3Note that an user modification of the root filesystem would be detected at boot-time.

8

Given that we want to establish a shared reference monitor
on an internet scale, we must be able to create, move,
monitor, and delete virtual machines in a scalable fashion.
To that end, we create different management entities to
protect coalitions of virtual machines, physical sCore, and
distributed applications. This will allow the Shamon system
to support complex policies governing access to computing
resources, protection of VMs, network communications
between VMs and sCore, and membership in application-
specific coalitions.

