
Verifying Virtual Machine Integrity by Proxy
Joshua Schiffman, Thomas Moyer, Hayawardh Vijayakumar,

Trent Jaeger and Patrick McDaniel

Sponsored by NSF (CNS-0627551) and IBM Research

Integrity measurement enables remote parties to assess
 whether a system meets a set of security goals.
 However, all existing approaches place the burden of
 verifying often large and semantically diverse
 attestations on the verifier. Adding virtualization has
 complicated matters by increasing the amount of code
 that must be verified.

We propose a small and easy to verify Virtual Machine
 Verifier (VMV), which functions as a verifier by proxy for
 remote parties. The VMV is a static VM that uses a
 distribution specific integrity policy to verify VM
 attestations locally.

The VMV runs as a privileged domain (DomP) to host the
 VM it monitors. When a remote party wishes to vet a VM,
 the VM returns an attestation of the VMV vouching for it.
Thus, the remote party only needs to verify that a simple
 platform is enforcing a policy they trust.

Virtual Machine Verifier

Users often place their trust in entire software
 distributions. When a vendor adds or changes
 programs, users often expect others to use that same
 version. For our experiment, we created a custom
 Debian repository based off Ubuntu 8.04. Our
 distribution specifies its VMV and policy as a
 downloadable disk image and policy package.

VMVs are flexible in how they verify VM integrity. They
 can use any VM verification technique including:

•  VM introspection
•  Virtual hardware-based techniques
•  Service commitments

 Since the VMV runs in its own VM, malicious VMVs
 are isolated from the rest of the system.

Defining Integrity Polices Flexibility

Integrity Enforcement Mechanism
As an example method of verifying VM integrity, we modified
 SELinux and PRIMA to perform secure code execution.
 Given a policy database of trusted code hashes, the VM’s
 kernel denies execution of any code running with a trusted
 subject label that is not found in the database. The VMV
 ensures the VM maintains load time integrity by checking
 that the VM’s kernel will enforce the secure execution policy.

Using information flow analysis, we identified 23 types that
 form the trusted computing base of a standard Ubuntu
 distribution. The policy file for our custom repository
 contains 34,239 program hashes. This is about 668KB in
 uncompressed form.

