
SIRA Codes
Simple structure

Composed of small blocks of circulant

permutation matrix

Own double-diagonal property

Ensure fast encoding through accumulator

Allow low-complexity decoding scheme in

practice

Problem Statement and
Motivation

Structured LDPC Codes Design and Its

Reconfigurable Decoder Implementation
Min Li (PhD Advisor: Aylin Yener, WCAN, Electrical Engineering)

Random LDPC codes are widely studied for

the past few years, which are shown to have

powerful error-correcting capability, i.e., only

0.0045 dB away from Shannon limit at rate ½;

Structured Irregular-Repeat-Accumulate

(SIRA) LDPC codes have lower implementation

complexity, which makes them more attractive

for applications in practice than random LDPC

codes;

Two problems are solved here:
To construct multi-rate SIRA (MR-SIRA) LDPC

codes with hardware-constraint;

To design an efficient reconfigurable decoder
for multi-rate block-structure LDPC codes.

This work was my previous research which had been done in early 2008 before I joined in WCAN.

Key Tools and Rules SIRA LDPC Codes

Code Construction
Algorithm

Key Steps

Step 1. Given the objective code parameter such as rate,

find the optimal degree distribution using Gaussian

Approximation with hardware-constraint;

Step 2. Given the node degree distribution, construct a

binary mother matrix M(H0) to fix the non-zero positions

in the matrix. Apply the improved PEG concept during

this process in order to obtain an optimal mother matrix;

Step 3. Construction of the objective matrix E(H) based

on M(H0): Fill in elements for each non-zero position

selected from {0, 1, …, L-1} and survive the candidate

that maximizes the girth;

Step 4. Given E(H), do cycle distribution analysis.

Repeat Step 2 and Step 3 until the optimal objective

matrix is found in a given number of trials.

Efficient Decoding for Our
Codes

Conclusion and Potential Future Work

An Example Performance of Our Codes

Reconfigurable Decoder
Design

Throughput Evaluation

Code Construction
Node Degree Distribution Optimization:

Gaussian Approximation (GA) with Constraint;

Binary Mother Matrix Optimization: Progressive

Edge Generation (PEG);

Objective Block Matrix Optimization: Optimal

Cycle Distribution Rule

Reconfigurable Decoder Design
Programmable processing modules

Programmable logic control modules

Minimum memory usage rule

Minimum logic gates rule

Scalable

Question:

How to fill in shifting index

pij to obtain an H matrix with

the optimal performance ?

0,0 0,1 0,

1,0 1,1

,

2,0 2,1

1,0 1,1 1,

()

0 1 1

0 0 1

 0 0 1

1 0 0

1 1 0

N M

i N M

M M

M M M N M

M N M M M M N

p p p

p p

p

p p

p p p

H
Ε

Hs
Hp=[Hpa Hpb]

Code Parameters
R= ½, M=16, N=32, L= 256;

Node degree distribution:

V node:

C node:

Construction Result:

2 60.2655 0.2389 0.4956x x x x
6 70.9292 0.0708x x x

 70 -1 -1 -1 -1 223 -1 -1 -1 183 -1 -1 192 -1 239 -1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 8 -1 -1 -1 -1 145 -1 185 -1 -1 234 -1 150 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1 145 -1 -1 198 -1 -1 -1 -1 206 100 -1 203 -1 41 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1 -1 182 -1 -1 180 -1 95 -1 -1 -1 230 -1 159 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

 200 -1 -1 -1 -1 -1 -1 118 -1 151 -1 8 -1 -1 -1 216 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 85 -1 -1 -1 33 -1 195 -1 -1 138 -1 101 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1 158 -1 -1 -1 -1 -1 -1 7 -1 140 122 81 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 79 -1 99 203 -1 -1 -1 161 0 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1

 -1 -1 -1 236 -1 -1 -1 45 -1 204 -1 -1 -1 80 153 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1

 -1 93 -1 -1 52 -1 -1 -1 -1 -1 16 -1 80 -1 253 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 107 -1 -1 167 -1 -1 87 -1 114 -1 89 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1

 217 -1 -1 -1 -1 -1 -1 -1 -1 209 49 -1 105 -1 175 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1

 -1 -1 -1 238 -1 -1 -1 -1 130 -1 130 -1 179 -1 -1 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

 -1 197 -1 -1 -1 -1 -1 136 -1 220 -1 -1 -1 110 251 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1

 -1 -1 210 -1 -1 -1 -1 -1 75 -1 192 76 -1 -1 193 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0

 -1 -1 -1 -1 231 -1 6 -1 -1 87 -1 -1 150 -1 -1 168 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

M
＝

1
6

N＝32

(8192, 4096) S-IRA LDPC Code Example

46.87

22.03

50.91

10

053.130Our

Code

077.970PEG

0.142.466.53Mackay

1286Cycle

Dis. (%)

46.87

22.03

50.91

10

053.130Our

Code

077.970PEG

0.142.466.53Mackay

1286Cycle

Dis. (%)

Cycle Distribution Comparison

Simulation: BP decoding, 50 iterations for

each.

0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

EbNo(dB)

B
E

R
/F

E
R

Mackay Code

PEG Code

Proposed Construction

Rate = 1/2 with length 8192

1.6 1.8 2 2.2 2.4 2.6
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

EbNo(dB)

B
E

R
/F

E
R

PEG Code

Proposed Construction

Rate = 3/4 with length 8192

Note: MR-SIRA codes show better error-correcting

performance than Mackay codes and are at least no worse

than PEG codes. But both encoding and decoding of MR-

SIRA codes are much simpler due to their inherent block

structure.

 Layered-Shuffle BP-Based Decoding

0 1 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 1

1 0 0 0 0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 1

H

1 2 3 4

1

2

3

4

Sub-layer 1

Sub-layer 2

Layer 1

Layer 2

Layer L

Step 1 Initialize LLRini,i

Step 2 Iteration：

While (iter < MAXITER) & (success_flag!=1)

for m = 1: M

horizontal process:

for l = 1: Llayer

for k = 1: L/Llayer

for each j belongs to N((m-1)L + (l-1)Llayer + k)

LQk, j = LLRpost, (iter-1), k, j – LR(iter-1), k, j

end

for each j belongs to N((m-1)L + (l-1)Llayer + k)

update LRiter , k, j= f (LQk, j)

end

for each j belongs to N((m-1)L + (l-1)Llayer + k)

update LLRpost, iter , k, j = f (LRiter , k, j)

end

end

end

end

make check sum calculation

if (check_sum_valid)

success_flag = 1

else

success_flag = 0

iter++

end

end

Step 3 Output final decoding bit streaming

Algorithm Description

 Sub-layers (layers) are scheduled

sequentially;

 Once each sub-layer finishes

updating, the variable nodes

connected with this layer are

updated immediately so that the

latest information from check nodes

is effectively propagated.

Iteration Pre-

Processing

Module

Received

Signal

from

Channel

Memory

for

Storing

Message

of VN

Memory for

Storing

Message of CN

Variable Nodes

Processing Module

Iteration Stopping

Detection and

Hard Decision

C
h
eck

 N
o
d
es

P
ro

cessin
g
 M

o
d
u
le

Check

Matrix

Initialization

…

…

…

… … …

… … …

…

…

…

Decoding

Output

Sub*

1
Sub*

2

Sub*

k

…

…

…W W

Wvn

Wvn

Wcn

Wcn

Configurable

Parameters

Setting

Control Signal

Data

Zf

Zf

Global Control

Logic

N-Processing

Control Logic

N-Accessing

Control Logic

Iteration

Control Logic

Sub * = Sub-Permutation

Module

Min

Message Extraction for CN 1

CN Processing Block1

SubMin Label Sign_Vec

Node1 Node2 Node3 Node4 Node5 Node dc

Min SubMin Label Sign_Vec

Min

CN Message Stroing 1

SubMin label Sign_Vec

VN Processing Block 1

Node1 Node2 Node3 Node4 Node5 Node dc

Node1 Node2 Node3 Node4 Node4 Node dc

VN Extra Message Recovery Block 1

Node1 Node2 Node3 Node4 Node5 Node dc

VN Pseudoposterior Message Reading Block 1

Node1 Node2 Node3 Node4 Node5 Node dc

Node1 Node2 Node3 Node4 Node5 Node dc

Node1 Node2 Node3 Node4 Node5 Node dc

Multi-Pipe Line for Iteration

Message Extraction for CN 2

CN Processing Block2

VN Extra Message Recovery Block 2

VN Pseudoposterior Message Reading Block 2

Key Features:

1) Support decoding of any

S-IRA codes with

moderate length

(1K~9K) and no quite

large node degrees (i.e.,

greater than 20);

2) Support different levels

of parallel factor

according to the tradeoff

between throughput and

hardware complexity;

3) Suitable for application

of adaptive

communication system

or cognitive radio

communication system.

Notation Table:

Number of code sub layers

Number of code column blocks

Number of code row blocks

Code rate

Msub

N

M

R

Number of clocks for each sub layer’s iterationTsub

Maximum system frequencyfmax

Number of maximum iterationsITERmax

Number of idle clocks in the decoding pipeline Tidle

Number of code sub layers

Number of code column blocks

Number of code row blocks

Code rate

Msub

N

M

R

Number of clocks for each sub layer’s iterationTsub

Maximum system frequencyfmax

Number of maximum iterationsITERmax

Number of idle clocks in the decoding pipeline Tidle

max

max

 Mbps
1sub sub idle

f N L R
Throughput

M M T M T ITER

48 16 32 64 128 256
0

20

40

60

80

100

120

Parallel Factor Zf

T
h
ro

u
g
h
p
u
t(

M
b
p
s
)

Rate 1/2 with length 8192, fmax = 120 M

48 16 32 64 128 256
0

50

100

150

200

250

300

Parallel Factor Zf

T
h
ro

u
g
h
p
u
t(

M
b
p
s
)

Rate 3/4 with length 8192, fmax = 120 M

 Conclusion:

The proposed MR-SIRA codes and reconfigurable decoder design are attractive for applications that require both excellent code performance and low

implementation complexity;

 Possible Work: (1) Structured codes and implementation issues of decoding for LDPC on Gf (q); (2) Application of BP to compressive sensing; (3)

Extended application of LDPC codes, i.e., cooperative network coding scenario.

