
SIRA Codes
Simple structure

Composed of small blocks of circulant 

permutation matrix

Own double-diagonal property

Ensure fast encoding through accumulator

Allow low-complexity decoding scheme in 

practice

Problem Statement and 
Motivation

Structured LDPC Codes Design and Its 

Reconfigurable Decoder Implementation
Min Li (PhD Advisor: Aylin Yener, WCAN, Electrical Engineering)

Random LDPC codes are widely studied for 

the past few years, which are shown to have 

powerful error-correcting capability, i.e., only 

0.0045 dB away from Shannon limit at rate ½;

Structured Irregular-Repeat-Accumulate 

(SIRA) LDPC codes have lower implementation 

complexity, which makes them more attractive 

for applications in practice than random LDPC 

codes;

Two problems are solved here:
To construct multi-rate SIRA ( MR-SIRA ) LDPC 

codes with hardware-constraint;

To design an efficient reconfigurable decoder
for multi-rate block-structure LDPC codes.

This work was my previous research which had been done in early 2008 before I joined in WCAN. 

Key Tools and Rules SIRA LDPC Codes

Code Construction 
Algorithm

Key Steps

Step 1.  Given the objective code parameter such as rate, 

find the optimal degree distribution using Gaussian 

Approximation with hardware-constraint; 

Step 2.  Given the node degree distribution, construct a 

binary mother matrix M(H0 ) to fix the non-zero positions 

in the matrix. Apply the improved PEG concept during 

this process in order to obtain an optimal mother matrix;

Step 3.  Construction of the objective matrix E(H) based 

on M(H0): Fill in elements for each non-zero position 

selected from {0, 1, …, L-1} and survive the candidate 

that maximizes the girth;

Step 4. Given E(H), do cycle distribution analysis. 

Repeat Step 2 and Step 3 until the optimal objective 

matrix is found in a given number of trials.

Efficient Decoding for Our 
Codes

Conclusion and Potential Future Work

An Example Performance of Our Codes

Reconfigurable Decoder 
Design

Throughput Evaluation

Code Construction
Node Degree Distribution Optimization: 

Gaussian Approximation (GA) with Constraint;

Binary Mother Matrix Optimization: Progressive 

Edge Generation (PEG);

Objective Block Matrix Optimization: Optimal 

Cycle Distribution Rule

Reconfigurable Decoder Design
Programmable processing modules

Programmable logic control modules

Minimum memory usage rule

Minimum logic gates rule

Scalable

Question:

How to fill in shifting index

pij to obtain an H matrix with

the optimal performance ?
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Code Parameters
R= ½, M=16, N=32, L= 256;

Node degree distribution:

V node:

C node:

Construction Result:
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(8192, 4096) S-IRA LDPC Code Example
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Cycle Distribution Comparison

Simulation: BP decoding, 50 iterations for 

each.
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Mackay Code

PEG Code

Proposed Construction

Rate = 1/2 with length 8192
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PEG Code

Proposed Construction

Rate = 3/4 with length 8192

Note: MR-SIRA codes show better error-correcting 

performance than Mackay codes and are at least no worse 

than PEG codes. But both encoding and decoding of MR-

SIRA codes are much simpler due to their inherent block 

structure.

 Layered-Shuffle BP-Based Decoding
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Sub-layer 1

Sub-layer 2

Layer 1

Layer 2

Layer L

Step 1  Initialize LLRini,i

Step 2  Iteration：

While (iter < MAXITER) & (success_flag!=1)   

for m = 1: M

horizontal process:

for l = 1: Llayer

for k = 1: L/Llayer

for each j belongs to N((m-1)L + (l-1)Llayer + k)   

LQk, j = LLRpost, (iter-1), k, j – LR(iter-1), k, j

end

for each j belongs to N((m-1)L + (l-1)Llayer + k)

update LRiter , k, j= f (LQk, j)

end

for each j belongs to N((m-1)L + (l-1)Llayer + k)

update LLRpost, iter , k, j = f (LRiter , k, j)

end

end

end

end

make check sum calculation

if (check_sum_valid)

success_flag = 1

else

success_flag = 0

iter++

end

end

Step 3  Output final decoding bit streaming

Algorithm Description

 Sub-layers (layers) are scheduled 

sequentially;

 Once each sub-layer finishes 

updating, the variable nodes 

connected with this layer are 

updated immediately so that the 

latest information from check nodes 

is effectively propagated.
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Key Features:

1)   Support decoding of any 

S-IRA codes with 

moderate length 

(1K~9K) and no quite 

large node degrees (i.e., 

greater than 20);

2)   Support different levels 

of parallel factor 

according to the tradeoff 

between throughput and 

hardware complexity;

3) Suitable for application 

of adaptive 

communication system 

or cognitive radio 

communication system.

Notation Table:
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 Conclusion: 

The proposed MR-SIRA codes and reconfigurable decoder design are attractive for applications that require both excellent code performance and low 

implementation complexity;

 Possible Work:  (1) Structured codes and implementation issues of decoding for LDPC on Gf (q); (2) Application of BP to compressive sensing; (3) 

Extended application of LDPC codes, i.e., cooperative network coding scenario.


