

Structured LDPC Codes Design and Its **Reconfigurable Decoder Implementation**

Min Li (PhD Advisor: Aylin Yener, WCAN, Electrical Engineering)

Problem Statement and Motivation

Random LDPC codes are widely studied for the past few years, which are shown to have powerful error-correcting capability, i.e., only 0.0045 dB away from Shannon limit at rate $\frac{1}{2}$;

> Structured Irregular-Repeat-Accumulate (SIRA) LDPC codes have lower implementation complexity, which makes them more attractive for applications in practice than random LDPC codes;

 \geq Two problems are solved here:

✓ To construct multi-rate SIRA (MR-SIRA) LDPC codes with hardware-constraint;

✓ To design an efficient *reconfigurable decoder* for multi-rate block-structure LDPC codes.

Code Construction Algorithm

Key Tools and Rules

Code Construction

- ✓ Node Degree Distribution Optimization:
- Gaussian Approximation (GA) with Constraint;
- ✓ Binary Mother Matrix Optimization: Progressive Edge Generation (PEG);
- ✓ Objective Block Matrix Optimization: Optimal Cycle Distribution Rule

Reconfigurable Decoder Design

- Programmable processing modules
- ✓Programmable logic control modules
- ✓ Minimum memory usage rule
- ✓ Minimum logic gates rule
- ✓ Scalable

An Example

SIRA LDPC Codes

>SIRA Codes

- ✓ Simple structure
 - Composed of small blocks of circulant permutation matrix
 - Own double-diagonal property
- ✓ Ensure fast encoding through accumulator
- Allow low-complexity decoding scheme in practice

Question:

How to fill in shifting index E_{μ} p_{ii} to obtain an H matrix with the optimal performance?

$= \begin{bmatrix} P_{1,0} \\ \vdots \\ P_{M-2,0} & P \\ P_{M-1,0} & P \end{bmatrix}$	$P_{M-2,1}$ $P_{M-1,1}$	 	$P_{i,N-M}$ \vdots $p_{M-1,N-M}$	-1 -1	·. -1	0 ·.	0 0	
$= \begin{vmatrix} P_{1,0} \\ \vdots \\ P_{M-2,0} & p \end{vmatrix}$	9 _{M−2,1}		<i>Pi</i> , <i>N</i> − <i>M</i> :	-1	•.	0	0	
$= \begin{vmatrix} P_{1,0} \\ \vdots \end{vmatrix}$	-	•	$P_{i,N-M}$	· ·	•	•		
$P_{1,0}$:	•.	<i>n</i>	·.	0	0	-1	
n	$p_{1,1}$		•	0	0	۰.	-1	
$p_{0,0}$	1 0,1	•••	$p_{0,N-M}$	0	•••	-1	-1	

Performance of Our Codes

Key Steps

Step 1. Given the objective code parameter such as rate, find the optimal degree distribution using Gaussian Approximation with hardware-constraint;

Step 2. Given the node degree distribution, construct a binary mother matrix $M(H_0)$ to fix the non-zero positions in the matrix. Apply the improved PEG concept during this process in order to obtain an optimal mother matrix;

Step 3. Construction of the objective matrix E(H) based on $M(H_0)$: Fill in elements for each non-zero position selected from {0, 1, ..., L-1} and survive the candidate that maximizes the girth;

Step 4. Given E(H), do cycle distribution analysis. Repeat Step 2 and Step 3 until the optimal objective matrix is found in a given number of trials.

Code Parameters

► R= ½, M=16, N=32, L= 256;

>Node degree distribution:

V node: $\lambda x = 0.2655x + 0.2389x^2 + 0.4956x^6$ **C node:** $\rho x = 0.9292x^6 + 0.0708x^7$

Construction Result:

^(8192, 4096) S-IRA LDPC Code Example

Simulation: BP decoding, 50 iterations for

Rate = 1/2 with length 8192

Rate = 3/4 with length 8192

>Note: MR-SIRA codes show better error-correcting performance than Mackay codes and are at least no worse than PEG codes. But both encoding and decoding of MR-SIRA codes are much simpler due to their inherent block structure.

Throughput Evaluation

Efficient Decoding for Our Codes

Layered-Shuffle BP-Based Decoding

Reconfigurable Decoder Design

Check Matrix Initializat Variable Node Detection and Processing Modu Hard Deci →Control Sig 3) → Data Aessage Extraction for CN 1 Message Extraction for CN 2 Min SubMin Label Sign_Vec

Min SubMin Label Sign_Vec

- 1) Support decoding of any S-IRA codes with moderate length (1K~9K) and no quite large node degrees (i.e., greater than 20);
- 2) Support different levels of parallel factor according to the tradeoff between throughput and hardware complexity;
- Suitable for application of adaptive communication system or cognitive radio communication system

Notation Table:

R	Code rate	T _{idle}	Number of idle clocks in the decoding pipeline
M	Number of code row blocks	ITER _{max}	Number of maximum iterations
N	Number of code column blocks	f _{max}	Maximum system frequency
M _{sub}	Number of code sub layers	T _{sub}	Number of clocks for each sub layer's iteration

$$Throughput = \frac{f_{\max} \times N \times L \times R}{\left[M \times M_{sub} \times T_{sub} + M - 1 \times T_{idle}\right] \times ITER_{\max}}$$
Mbps

Key Features:

Once each sub-layer finishes updating, the variable nodes connected with this layer are updated immediately so that the latest information from check nodes is effectively propagated.

Multi-Pipe Line for Iteration

Conclusion and Potential Future Work

> Conclusion:

Interprote of the proposed MR-SIRA codes and reconfigurable decoder design are attractive for applications that require both excellent code performance and low implementation complexity;

 \geq Possible Work: (1) Structured codes and implementation issues of decoding for LDPC on Gf (q); (2) Application of BP to compressive sensing; (3) Extended application of LDPC codes, i.e., cooperative network coding scenario.

This work was my previous research which had been done in early 2008 before I joined in WCAN.