Implementation of Utility-based Rate Control Protocol (WSN-NUM)

Sharanya Eswaran, Archan Misra, Flavio Bergamaschi, Thomas La Porta

Mission-oriented Sensor Networks							
Mission utilizes multiple sensors	Sensor contributes to multiple missions						
 Different sensors have different relative importance 	Multicast flows						
 Importance of one sensor changes 	 Different missions need different 						
dynamically based on data quality from other sensor	amount of data from the same sensor.						
Mission-oriented Wireless Sensor Networks							
Wireless medium	Dynamic environment						
Channel capacity is not fixed	Missions come and go at different times						
Exploit broadcast capabilities at the link layer	Topology changes frequently (node mobility,						
Contention among transmissions can change	wireless link variability, sensor activation						
Mission-oriented Military Wi	reless Sensor Networks						
High priority • High priority missions have differed • Need for differentiated or prioritized	<i>missions</i> ent resource requirements ed congestion control						

Network Utility Maximization (NUM)

A Distributed, Utility-Based Formulation of Resource Sharing

>Each mission has a "utility": $U_m(x_1, x_2, ..., x_s)$

• A measure of how "happy" the mission is

A function of source rates from all its sensors

- > Allocate WSN resources (network interface bandwidth of nodes) to maximize cumulative utility.
- > Congestion control is formulated as a utility maximization problem

Our Objective:

"Rate/Congestion Control for Network Utility Maximization"

Our Analysis Framework

SENSOR(U,L):

subject to :

 $\sum_{\forall (k,s) \in l} \frac{x_s}{c_{k,s}} \leq 1$

for each maximal clique $l \in L$

- "transmission-specific" cliques Cliques => "contention region" • No two transmissions in a
- clique can occur simultaneously

NETWORK (L; w):

 $SINK_m(U_m;\lambda_m)$:

over $x_s \ge 0$.

over $x_s \ge 0$.

maximize $\sum_{s \in S} \sum_{m \in M} w_{ms} \log(x_s);$

subject to $\sum_{\forall (k,s)} \frac{x_s}{c_{k,s}} \le 1$, for each clique $l \in L$,

 $\boldsymbol{\mu}_{l}(t) = \left(\sum_{\forall (k,s) \in l} \frac{x_{s}(t)}{c_{k,s}} - 1 + \varepsilon\right)^{+} / \varepsilon^{2}$

 $w_{ms} = \lambda_{ms} * x_s$: "willingness to pay"

maximize $U_m(\frac{\overline{W}_m}{\overline{\lambda}_m}) - \sum_{s \in set(m)} W_{ms}$

 $W_{ms} = x_s(t) \frac{\partial U_m}{\partial x_s}$

WSN-NUM Protocol

Implementation Details

Results

- Price-based, iterative scheme
- Solve two independent sub-problems
- Network nodes:
 - Aim to maximize "revenue"
 - Compute Clique cost: degree of congestion in the clique
 - Flow cost = sum of costs of all cliques along the flow
- Mission (sink):
 - Aims to maximize its utility minus the cost
 - Sends path cost to each source
 - Sends 'willingness to pay' for each source
- Sensor (source):
 - Adjusts rate to drive gradient to zero:

$$\frac{d}{dr} r(t) - r(t) = r(t) + (-\nabla r(t) + ($$

Conclusion

- Real-time implementation shows correctness and applicability of WSN-NUM
- Using sensor fabric shows compatibility of WSN-NUM with SOA applications
- Many tunable parameters for controlling performance factors such as convergence time and packet loss.

Parameter	Broadcast		Unicast			
	Optimal	Simulation	Impl.	Optimal	Simulation	Impl.
Rate	33.33	25.81	25.35	23.83	19.19	18.70
(KBPS)	16.67	13.08	11.63	11.42	9.58	9.34
	50.00	46.09	46.11	41.67	35.70	34.14
PDR (%)	0	83.30	77.70	0	97.22	96.39
Net	33.33	21.50	19.70	23.83	18.65	18.01
Rate	16.67	10.90	9.03	11.416	9.31	8.99
(KBPS)	50.00	38.39	35.82	41.67	34.7	32.88
Utility	63.01	60.92	60.34	61.41	60.17	59.90

This work was sponsored by ITA