

Marginal Effects of Femtocells in Cellular Networks Michael Lin, Tom La Porta

Femtocells challenge traditional base station planning and management by giving end-users the ability to deploy lowpower base stations in their homes without coordinating with service providers. Femtocells operate in the same frequency bands as operated-managed macrocells, which creates *cross-tier interference* between femtocells and macrocells. We model a high-density femtocell deployment using stochastic geometry to understand two problems:

• What density and spatial configuration of femtocells, λ_f and Φ_f , in a fixed area will lead to a high probability of outage for non-femtocell users, thereby leading to an overall *reduction* in network capacity?

• What centralized auto-configuration or deployment policies can prevent this from happening?

Deployment Scenario

- High-density femtocell deployment
- Closed or open access policies
- Frequency re-use:
 - CDMA systems are interference-limited
 - Cross-tier interference between the macrocell and femtocells
 - Co-tier interference amongst femtocells

- Mobiles connect to either a femtocell or the macrocell, but not both
- Handovers between macrocell and femtocells are possible

Network Model

- Macrocell at origin, M₀; we assume the entire unit square is covered by the macrocell
- Path loss function, l(r) with indoor/outdoor path loss exponents α, β
- Femtocells distributed via a spatial Poisson process, Φ_f , with intensity λ_f
- Mobiles distributed via a spatial Poisson process, Ψ_m , with intensity λ_m
- Macrocell and femtocell transmit powers, P_M and P_{ϕ_i} , $i = 0, 1, \ldots$
- Additive white Gaussian noise, GWe are interested in determining the signal-to-noiseplus-interference ratio ξ_{π} for mobiles at point π connected

to the macrocell or a femtocell, $\psi_{M,\pi}, \psi_{\phi_i,\pi}$.

$$\xi_{\psi_M}^{\pi} = \frac{P_M / l(|\pi - 0|)}{\sum_{i \in \Phi_f} P_{\phi_i} + G}$$

$$\xi_{\psi_{\phi_i}}^{\pi} = \frac{P_{\phi_i}/l(|\pi - \phi_i|)}{P_M + \sum_{j \in \Phi_f, j \neq i} P_{\phi_j} + G}$$

Then the probability of outage at π is:

$$P(\xi^{\pi} \le t)$$

We are continuing to develop our model and running system-level simulations to characterize the impact of femtocell density on outage and handover probabilities.